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Abstract

Thermodynamic approaches to ®nite elasticity are almost generally accepted. Nevertheless, there is still a lack of

proof for the necessity of potential strain-stress relations in generally de®ned elasticity and hypo-elasticity. This

situation has resulted in ambiguous applications of the general concept of elasticity to the description of irreversible

phenomena in viscoelastic solids and liquids. This paper makes a brief review of the general concepts of elasticity

and hypo-elasticity, with most of the attention paid to the Eulerian description, employed in viscoelastic theories.

Then it is demonstrated that all hypothetical materials with non-potential ®nite elastic or hypo-elastic constitutive

relations can create an energy from nothing, i.e. work as perpetual motion machines. This gives a `physical' proof of

necessity of potential conditions in general ®nite elasticity and hypo-elasticity and their extensions to ®nite

viscoelasticity. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper is motivated by the fact that many theories of irreversible phenomena in continua include

as a `well-known part', the concept of ®nite elasticity. These are the theories of nonlinear viscoelasticity

in solids, e.g. polymer glasses and cross-linked rubbers (Green and Rivlin, 1957; Treloar, 1975;

Wineman and Waldron, 1993; Drozdov, 1998), and in liquids, e.g. polymer melts and concentrated

solutions (Larson, 1988; Leonov and Prokunin, 1994). In the case of the viscoelastic polymer solids, the

concept of elasticity is used for both the `instantaneous' and equilibrium responses. For viscoelastic

liquids, it is employed for the instantaneous elastic response and, for thermodynamically related

theories, as a state of `local thermodynamic equilibrium'. The elasto-viscoplasticity of metals (Naghdi,
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1990; Leonov and Padovan, 1996) represents another type of irreversible theory where the concept of

®nite elasticity is also important.

A great majority of books on the theory of elasticity (Green and Adkins, 1960; Green and Zerna,

1968; Narasimhan, 1993; Antman, 1995) employ the approach consistent with thermodynamics, where

the stress and strain tensors are related through a potential function, i.e. the Helmholtz free energy of

deformations. Antman (1995) gives one of the recent clear proofs of the existence of such a potential

relation based on the thermomechanics approach (Coleman and Noll, 1963; Coleman, 1964), providing

that there is no dissipation in elastic solids in isothermal case.

However, it still does not mathematically necessitate the thermodynamically related approaches.

Perhaps this is why in the books by Truesdell and Noll (1992) and Wang and Truesdell (1973) the

thermodynamically consistent, potential approach of hyperelasticity coexists with thermodynamically

inconsistent, non-potential approach of elasticity and hypo-elasticity. This coexistence has been extended

to the case of viscoelastic liquids, where a non-potential single integral constitutive relation proposed by

Rivlin and Sawyers (1971), was then `successfully' tested in several papers (Larson, 1988, section 3.6).

More general non-potential approach for viscoelastic liquids had been proposed earlier (Truesdell and

Noll, 1992). Evidently, these non-potential approaches are rooted in the general concept of ®nite

elasticity.

The elastic materials are generally de®ned as simple materials without memory (Truesdell and Noll,

1992). The more narrow de®nition of elasticity proposed earlier by Novozhilov (1961), includes the

important additional condition that the work spent on deformation is independent of a deformation

path. This condition was found su�cient by Sternberg and Knowles (1979) to prove the existence of

elastic potential for a simple material without memory (Novozhilov, 1961).

It seems impossible to ®nd a pure mathematical proof of necessity of the potential stress±strain

relations within the general de®nition of elasticity. Therefore, a clear physical proof of the necessity

should be given instead. In this regard, the demonstration of pathological, unphysical behavior of

thermodynamically inconsistent constitutive models seems to be a proper tool to distinguish the class of

potential relations in elasticity as only physically meaningful. This is the main objective of this paper.

The paper is organized as follows. Section 2 gives some preliminaries in continuum mechanics, with

more attention paid to Eulerian description useful in the case of rubber elasticity. Section 3 brie¯y

describes the constitutive relations for elastic materials. Here, much attention is paid to the isotropic

case employed in rubber elasticity. Section 4 gives a new analysis of hypo-elasticity. Section 5 proves

work theorems exposing non-physical features of non-potential approaches. Finally, Section 6 brie¯y

discusses the de®nition of elastic materials and the stability constraints imposed on hyperelastic

constitutive relations.

2. Continuum mechanics preliminary

Consider a material continuum which initially (at time t0) occupies a domain Ot0 and at actual time

t �t > t0�, a domain Ot �Ot0 , Ot � R3�. The vector-points x and x �x 2 Ot0 , x 2 Ot� mark the

`corresponding material points' belonging to Ot0 and Ot, respectively. We call x and x Lagrangean and

Eulerian coordinates of material points in continuum, respectively, and postulate the existence of a local

one-to-one mapping,

x � x
ÿ
t, x

� ÿ
t > t0

�
, x

ÿ
t0, x

�
� x, �1�

except for some special points, lines and surfaces. Eqn (1) which constitutes the law of motion for a

continuum, contains all the information of its motions.
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The relations

dx � F � dx or F �
ÿ
rxx

�T
�2�

de®ne the second rank strain gradient tensor F. The subscript T denotes the operation of transposition.

The above local one-to-one mapping between x and x means that detF 6� 0.

The Cayley polar decomposition,

F � U � R �3�

represents the strain gradient through symmetric, U, and orthogonal R, tensors. The positive de®nite,

symmetric Finger tensor B is then introduced as follows:

B � F � FT � U2 �4�

It gives the Eulerian representation of the metric tensor in the initial (at time t0), rest state. The Finger

tensor B is often employed in theories of rubber elasticity (Treloar, 1975).

A measure of deformation is de®ned as any monotone isotropic function of tensor B. It means that the

Finger tensor B itself is a measure of deformation. Other useful Eulerian measures of deformation are:

C � Bÿ1; U �
����
B

q
; H � ln U �

1

2
ln B; G �

1

2

ÿ
dÿ C

�
�5�

Here C, U, and H are the Green, stretching and Hencky tensors, respectively, and d is the unit tensor. In

(5) G is the Green deformation measure which is equal to the half of the di�erence between the

fundamental tensors at actual, t, and initial, t0, time instants. It should be noted that in Eulerian

approach, all the vector and tensor ®elds can be treated without loss of generality as Cartesian.

The Cayley-Hamilton identity,

B3 ÿ I1B
2 � I2Bÿ I3d � 0, �6�

introduces the basic invariants, Ik, as follows:

I1 � trB; I2 � 1=2
�
I21 ÿ trB2

�
; I3 � detB: �7�

Using the local mass conservation, yields:

detF � r0=r, I3 �
ÿ
r0=r

�2
, �8�

where r and r0 are the respective densities in the actual and initial states of deformation. Due to the

®rst formula in (8), detF > 0, meaning that the tensor U is strictly positively de®nite.

The common de®nition of velocity in continuum is:

u � dx=dt � @x=@ tjxxx: �9�

Consequently using formulate (9) and (2) yields:

du � ÇF � dx � ÇF � Fÿ1 � dx:

Hence the Eulerian de®nition of the velocity gradient tensor, rv, is:
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�rv�T� _F � Fÿ1, or rv �
�
FT

�ÿ1
_F
T

: �10�

Here the overdot denotes the operation d=dt � @=@ t� u � r.

The evolution equations for the tensors B and C immediately result from (10) as:

B
r

� _B ÿ B � rvÿ �ru�T� B � B
0

ÿ B �DÿD � B � 0; �
B
0

� B � Oÿ O � B

�
C
0

� _C �ru � C� C � �rv�T � C
0

�D � C� C �D � 0: �11�

Here the upper symbols, r, D, and 0 denote the operations of the upper and lower convected, and co-

rotational tensor time derivatives, respectively. The strain rate, D, and vorticity (or spin), O, tensors in

(11) are de®ned as:

rv � D� O, D � 1=2
�
ru� �ru�T

�
, O � 1=2

�
ruÿ �ru�T

�
: �12�

Eqns (11) contain all the information about the evolution of deformation in continuum, including the

law of mass conservation:

@r=@ t� r � �ru� � 0: �13�

This equation can immediately be derived from eqn (11).

In addition to kinematics, the dynamic e�ects described by surface forces, can be characterized in

Eulerian approach by the symmetric Cauchy stress tensor s.

Along with the Eulerian presentation of kinematic tensors and stress tensor, it is also useful to employ

their Lagrangean presentation. In this regard, along with basis (covariant) Eulerian vectors ei�x�, one

can introduce the Lagrangian basis vectors, eÃ i(x, t ), which are `imbedded' in the continuum and travel

with it (Sedov, 1965). Denoting the Lagrangian components of tensors by overcaps, the relations

between these and Eulerian tensor components are de®ned as:

C � Cije
ie j � g0ij Ãe

i
Ãe

j; B � Bijeiej � g
ij
0
Ãe i Ãe j;

s � sijeiej � ŝ
ij
Ãe i Ãe j:

G � gije
ie j � ĝij Ãe

i
Ãe

j
; D � Dije

ie j � ^Dij Ãe
i
Ãe

j
; �14�

Here g0ij and g
ij
0 are components of the metric tensor in initial (non-deformed) state at t � t0. It should

be mentioned that the Lagrangean representations of the Eulerian tensors shown in eqns (14) are valid

only for shown structure of indices (Sedov, 1965). This is because the operations of raising and lowering

indices for Eulerian tensors are carried out by the metric tensor gik � �ei, ek�, and for Lagrangean

tensors, by ĝik � �Ãe i, Ãek�.

One important kinematic relation (Oldroyd, 1950) readily established for Lagrangean formulation, is:

@ ĝij=@ tjx �
^Dij �15�

Using eqns (14) and (15) the well-known expression for the rate and variation of local work W (per

mass unit) under action of surface forces can dually be represented as:

A.I. Leonov / International Journal of Solids and Structures 37 (2000) 2565±25762568



r _W � tr
ÿ
s �D

�
� ŝij ^Dij; or r dW � ŝij dĝij �16�

All the above formulae are independent of a choice of constitutive relations. In the following two

sections, we specify the type of materials under discussion.

3. Constitutive relations for elastic materials

According to the general de®nition (Truesdell and Noll, 1992), ``a material is called elastic if it is

simple and if the stress at time t depends only on the local con®guration at time t, and not on the entire

past history of motion''. The concept of simple materials, has been extensively discussed by Truesdell

and Noll (1992).

The above general de®nition of elastic materials yields a generally anisotropic constitutive relation

between the stress tensor s and a measure of deformation, which can be written as:

s � h
ÿ
B
�
� I

ÿ
G
�
� ^l
�
ĝij; g

0
ij

�
�17�

In isotropic case, eqn (17) is speci®ed so that the stress is an isotropic tensor function of a

deformation measure. This can generally be represented in Eulerian approach as:

s
ÿ
B
�
� 2B �

X3
k�1

jk@Ik=@B; jk � jk�I1, I2, I3� �k � 1, 2, 3� �18�

Also, due to eqns (11) and (18), eqns (16) can be rewritten in isotropic case in the forms:

r _W � tr
�
s � _H

�
�

1

2
tr
�
s � Bÿ1 � _B

�
�
X3
k�1

jk
_Ik;

r dW � tr
ÿ
s � dH

�
�

1

2
tr
�
s � Bÿ1 � dB

�
�
X3
k�1

jk dIk �19�

On the right-hand side of the second formula in (19) presents so called Pfa�'s di�erential form which

generally is non-integrable. The Pfa�'s forms play important roles in formal thermodynamics, as

compared to integrable di�erential forms related to thermodynamic potentials (Sommerfeld, 1956).

In the particular case of incompressible elasticity, when I3 � 1, eqns (17) and (18) should include the

additional term, ÿpd, where p is the isotropic pressure serving as a Lagrange multiplier to relieve the

incompressibility constraint I3 � 1.

Finally, when the stress±strain relations are potential, a strain energy function F (per mass unit) exists,

such that

r _W � tr
ÿ
D � s

�
� r _F , or r dW � ŝ

ij
dĝij � r dF, �20a�

r dW � s � dH � r dF: �20b�

Eqns (20) result in the stress±strain relations:
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ŝ
ij
�

r

2

 
@F

@ ĝij
�

@F

@ ĝji

!
, �21a�

s � r@F=@H � 2rB � @F=@B, jk � @F=@Ik: �21b�

In formulae (20) and (21), the isotropic case is speci®ed in eqns (20b) and (21b), with the constitutive

relation (21b) obtained by Murnaghan (1937).

Eqns (20) and (21) are in fact the de®nition of the hyperelastic solids. The local strain potential F has

the thermodynamic sense of the Helmholtz free energy deformation function per mass unit. Eqn (21b)

shows that for isotropic elastic solids, the `true' thermodynamically conjugated variables are the

thermodynamic stress, s=r and Hencky strain tensor, H. However, the straightforward use of this tensor

in the evolution eqn (11) is rather awkward (Gurtin and Spear, 1983).

Eqns (20) demonstrate that for hyperelastic materials, the work produced by surface forces results in

the accumulation of free energy of deformation. Therefore under any isothermal regime of deformation,

the hyperelastic solids are non-dissipative.

4. Elastic constitutive relation of rate type: hypo-elasticity

The de®nition of hypo-elastic constitutive relation (Truesdell and Noll, 1992) is:

s
0

�
h
a1trD� a2tr

ÿ
s �D

�
� a3tr

�
s2 �D

�i
d�

h
a4trD� a5tr

ÿ
s �D

�
� a6tr

�
s2 �D

�i
s

�
h
a7trD� a8tr

ÿ
s �D

�
� a9tr

�
s2 �D

�i
s2 � a10D� a11

ÿ
D � s� s �D

�
� a12

�
D � s2 � s2 �D

�
:

�22�

Here s
0

is the co-rotational time derivative of stress tensor s. Eqn (22) is a rate type of constitutive

relation between the stress s and the strain rate D tensors for isotropic solids. The right-hand side in

eqn (22) is presented as an isotropic tensor function of s and D, linear in D, with the scalar coe�cients

ak depending on three invariants of stress tensor s:

Is1 � trs, Is2 � �1=2�trs2, Is3 � �1=3�trs3 �23�

Due to the term with the scalar multiplier a11 in eqn (22), the stress rate, without loss of generality, can

also be written in the form of either upper or lower convected tensor time derivatives.

The incompressible case corresponds to the particular relations in eqn (22):

trD � 0, s � ÿpd� s
e
, a1 � a4 � a7 � 0, s

0

4
s

e �24�

Here p is the isotropic pressure and s e is the extra stress tensor. In this case, the invariants of stress

tensor de®ned by eqn (23) should also be changed for the respective three invariants of the extra stress

tensor s e. It should be mentioned that in the general nonlinear case, Is1e � trs e 6� 0. Also, the ®rst

formula in (16) for rate of work is still valid here since it is independent of a constitutive relation.

Bernstein (1960) discussed the hypo-elasticity and its relation to the ®nite elasticity and hyperelasticity

(Truesdell and Noll, 1992, sections 99±101). Since the constitutive eqn (22) is isotropic, a simpler

procedure as compared to that employed by Bernstein (1960), is proposed below to establish the

conditions of potentiality. We will operate below with some di�erential forms for the rates _I
s

k de®ned in

eqn (23). Therefore, the conditions of potentiality will be treated as those for integrability.
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To obtain the di�erential forms we perform consequently the three operations: (i) making trace of eqn

(22); (ii) making scalar multiplication of eqn (22) by the stress tensor, s; and (iii) making scalar

multiplication of eqn (23) by square of the stress tensor, s2. It is useful to note that due to eqn (23), the

following equalities hold true:

tr

�
sm � s

0
�
� tr

ÿ
sm � _sss

�
�

d

dt

 
tr
�
sm�1

�
m� 1

!
� _I

s

m�1 � �m � 0, 1, 2� �25�

When performing the operations in (ii) and (iii), the Caley±Hamilton identity is used to express the

stress polynomials of order more than two through the second order polynomials, and also represent the

basic stress invariants in the Caley±Hamilton identity through the three stress invariants Isk in eqn (23).

In doing so, eqn (22) yields:

_I
s

1 � A11trD� A12tr
ÿ
s �D

�
� A13tr

�
s2 �D

�

_I
s

2 � A21trD� A22tr
ÿ
s �D

�
� A23tr

�
s2 �D

�

_I
s

3 � A31trD� A32tr
ÿ
s �D

�
� A33tr

�
s2 �D

�
�26�

Here Aik are some linear functions with respect to the scalars ak in eqn (22), depending on the three

stress invariants Isk de®ned in eqn (23). Also, due to eqns (13) and (16),

trD � ÿ _r=r, and tr
ÿ
s �D

�
� r _W : �27�

Eqns (26) can be treated as a set of inhomogeneous linear algebraic equations with respect to the

three quantities: trD, tr�s �D�, and tr�s2 �D�.

If detkAikk 6� 0, these quantities are uniquely expressed as a linear form of the left-hand side of eqn

(26):

_r=r � rk _I
s

k,
_W � �wk=r� _I

s

k, tr
�
s2 �D

�
� sk _I

s

k: �28�

Here the coe�cients rk, wk and sk are known functions of the stress invariants Isk de®ned in eqn (24), as

soon the constitutive scalars ak in eqn (23) are known.

Considering now only the ®rst and second equations in (28), one can readily establish the conditions

of potentiality/integrability:

@rk

@Isj
�

@rj

@Isk
,

@

@Isj

�
wk

r

�
�

@

@Isk

�
wj

r

�
� �k, j � 1, 2, 3� �29�

Indeed, if the ®rst conditions of potentiality in eqns (29) holds, then the ®rst di�erential form there is

integrable and therefore the density depends only on the stress invariants Isk in eqn (25). It means that a

function r � r�Is1, I
s
2, I

s
3� does exist. Then substituting it into the second conditions of potentiality in eqn

(29) ensures the existence of the potential function C�Is1, I
s
2, I

s
3�. Evidently, both conditions in eqns (29)

are necessary and su�cient for the potentiality.

When detkAikk � 0, eqns (28) can also in principle, be obtained when using higher powers of

multipliers sn�n > 2, 3� in the above operations (i) and (ii). However, it will only show that the hypo-

elastic constitutive relation (22) is not robust.
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The same procedure, but using only steps (i) and (ii) is applicable under conditions (24) to the

incompressible hypo-elasticity. In this case, only two equations of type (26) hold:

_I
s

1 � B11r0
_W � B12tr

�
s2 �D

�
, _I

s

2 � B21r0
_W � B22tr

�
s2 �D

�
�30�

Here the coe�cients Bik have the explicit expressions through ak in eqn (23):

B11 � 3a1 � Is1a3 � Is2a5 � a8, B12 � 3a2 � Is1a4 � Is2a6 � a9,

B21 � Is1a1 � Is2a3 � Is3a5 �

h
Is2 ÿ

ÿ
Is1
�2i

a9=2� a10,

B22 � Is1�a2 � a9� � Is2a4 � Is3a6 � a8 �31�

We assume that for the linear set of eqns (30),

D � detkBikk � B11B22 ÿ B12B21 6� 0:

Then the solution of eqn (30) for rate of work is:

r0
_W �

�
B22

_I
s

1 ÿ B12
_I
s

2=2

�
=D

Thus the condition of integrability (potentiality) is:

@

@Is1

�
B12

D

�
� 2

@

@Is2

�
B22

D

�
� 0 �32�

It means that in the incompressible case, the potential function C�Is1, I
s
2, I

s
3� also exists.

The above results show that the potential hypo-elastic constitutive relations (22), (23) or (22)±(24) are

the constitutive relations for hyperelasticity. This immediately follows from the potentiality:

dW � tr
�ÿ
s=r

�
� dH

�
� dC�s�: �33�

Eqn (33) displaying the existence of (generally multi-valued) function H�s�, shows that the potential case

of hypo-elasticity is a type of hyperelasticity, with

C�s� � F
ÿ
B�s�

�
: �34�

5. Work theorems

As mentioned, Knowles and Sternberg (1977) have proved that an elastic material is a hyperelastic

under additional (su�cient) condition that the work spent on any cyclic quasi-static deformation is

equal to zero. We now make one step forward to demonstrate, complimentary to Knowles and

Sternberg (1977), that non-potential approaches in both elasticity and hypo-elasticity are physically

meaningless.
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5.1. Isotropic elasticity

Consider in the 3D domain fIk > 0g of strain invariants Ik a closed, piece-wise smooth curve G. Any

such a curve that goes through the rest state R: fI1 � I2 � 3, I3 � 1g, forms a closed deformation path.

Let S�G� be the set of surfaces which can be pulled on the curve G. A closed deformation path is called

non-trivial, if inffmesS�G�g 6� 0. It means that a non-trivial closed deformation path forms a loop in the

strain invariant domain, which in trivial case degenerates in a simple curve.

The closed deformation path is always trivial when loading and unloading is carried out using only a

single deformation mode, such as simple shear, simple elongation, etc. To create a non-trivial

deformation path in testing experiments, one should employ a combination of single deformation

modes, e.g. to use initially equi-biaxial extension during loading, which is then changed to a uniaxial

extension with following unloading in uniaxial extension mode.

5.1.1. Theorem

Any hypothetical isotropic elastic material with general non-potential constitutive relation (18), can

produce energy from nothing, i.e. serve as perpetual motion machine.

5.1.2. Proof

For any homogeneous quasi-static deformation, the local work DW along a nontrivial closed

deformation path with a loop-wise contour G, due to the second eqn (19) is:

DW �

�
G

�jk=r� dIk: �35�

Let us ®x the chosen contour G. Since the constitutive eqn (18) is assumed to be non-potential, the

integrand in contour integral (35) represents the non-integrable Pfa�'s form (19). Then depending on the

direction of integration around the contour, the integral (35) is either positive or negative. Let us choose

such a direction of integration, starting from the rest state R, that DW > 0. This inequality proves the

theorem.

5.1.3. Remark

If the integration direction in (35) is chosen so that DW < 0, it leads to unexpected `perpetual'

dissipation.

5.1.4. Remark

Due to relation (35), for any hyperelastic material with conditions of potentiality (21b), DW � 0.

5.1.5. Remark

The ®rst expression in (19) for the rate of work can also be used, since in this case,

DW �

�t2
t1

�jk=r� d
_Ik �

�
G

�jk=r� dIk: �36�

Here t1 and t2 are the time instants of starting and ending the deformation process which forms the

closed non-trivial deformation path G in (35).

5.1.6. Remark

In the compressible case, closed non-trivial deformation path with the contour G, is now de®ned as a

plain curve in the wedge-type 2D domain of invariants I1 and I2, with the origin in the point R: fI1 �
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I2 � 3g (Green and Adkins, 1960). Then the proof of the theorem 1 is repeated using the modi®cations

of relations (18) with I3 � 1 and k � 1, 2.

5.1.7. Remark

On any trivial deformation paths, non-potential ®nite elasticity and hyperelasticity are not

distinguishable, since on these paths, DW � 0. The loading and unloading along trivial deformation

paths are widely used for testing materials in one type of deformation, such as simple extension, simple

shear etc.

The non-potential constitutive relations which resulted in the behavior exposed in the theorem 1, are

physically meaningless. Therefore to avoid these unphysical situations, we de®ne the physically

meaningful (or thermodynamically consistent) elastic constitutive relations as those that produce no work

in any quasistatic deformations along any closed nontrivial deformation path (Sternberg and Knowles,

1979).

5.1.8. Theorem

The general isotropic elastic constitutive relations (18) are physically meaningful if, and only if, they are

hyperelastic (or potential).

5.1.9. Proof

The necessity immediately follows from eqn (35), when the homogeneous quasi-static deformations are

chosen for consideration.

The su�ciency is evident due to the above de®nition, since the total work Wtot in an elastic body

along all non-trivial deformation paths con®ned in its actual volume V�t� �� mesOt� is:

Wtot �

�
V�t�

dx

�
G�x�

�jk=r� dIk � 0: �37�

The extension of theorem 2 to the formulation of the local rate of work, r _W , follows the relation

(36), and to the incompressible case, it is made as in the remark 4 to the theorem 1.

5.2. General (non-isotropic) elasticity

In this case, it is convenient to use the general Langrangean formulae (16) and (17), and de®ne a

closed non-trivial deformation path ÃG g in the entire 6D `space' fÿ 1 < ĝij <1g. The above theorems 1

and 2, along with remarks 1±5, are also hold, since due to (16) and (17),

DW �

�t2
t1

ÿ
ŝ
ij
=r
�

^Dij dt �

�
^Gg

ÿ
ŝ
ij
=r
�
dĝij, �38�

and in the case of non-potentiality, the integrand of the second integral in eqn (38) is a non-integral

Pfa�'s form.

5.3. Hypo-elasticity

The constitutive relations are given here by eqn (22). First, we make exactly the same de®nition as

above for the closed non-trivial stress-invariant path Gs in the 3D `space' fÿ1 < Isk < �1g of the three

stress invariants Isk de®ned in eqn (23). We can then formulate and prove two theorems, similar to the

above theorems 1 and 2, since due to the second formula in eqns (29),
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DW �

�t2
t1

�wk=r� d _I
s

k �

�
G0

�wk=r� dI
s
k, �39�

and in the non-potential case, the integrand of the second integral in eqn (39) is a non-integrable Pfa�'s

form.

We now formulate all the results obtained in this Section, as the general theorem.

5.3.1. Theorem

Constitutive relations for general elasticity or hypo-elasticity are physically meaningful if, and only if,

they are hyperelastic (or potential).

6. Concluding remarks

(1) The demonstrations given in Section 5 clearly show that non-potential approaches should be treated

as mathematical abstractions having nothing in common with the behavior of real materials. It is

evident that the general de®nition of elasticity/hyperelasticity given by Truesdell and Noll (1992) is

not su�cient to single out the only physically meaningful potential approach. Therefore, as the

consequence of the theorem 3, the following de®nition for elasticity is suggested (compare it with that

proposed by Novozhilov, 1961): A material is called elastic if (i) it is simple; (ii) the stress at time t

depends only on the local con®guration at time t, and not on the entire past history of motion; and

(iii) the work of surface forces spent on a deformation is independent of a deformation path.

(2) The constitutive equations should also obey the stability constraints. They have been completely

analyzed only for isotropic hyperelastic cases.

The thermodynamic stability criteria called `GNC� conditions' were established long ago (Truesdell

and Noll, 1992, Section 52). Their physical sense is the convexity of the elastic potential with respect to

the Hencky strain measure. This condition forbids the non-monotony in the general potential relation

H�s� established after eqn (33).

More general Hadamard stability criteria of ®eld equations correspond to the conditions of strong

ellipticity which coincide with the stability requirements known for dynamic problems. These constraints

have been established in both the compressible (Knowles and Sternberg, 1977) and incompressible (Zee

and Sternberg, 1983) cases and presented in the form of `exact' inequalities imposed on the ®rst and

second derivatives of elastic potential with respect to strain invariants, Ik. The GCN
� conditions closely

associated with the conditions of strong ellipticity, can then be treated as necessary conditions for the

strong ellipticity or the Hadamard stability.
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